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Abstract—Genetic profiling via biomarkers in the food industry
is a technology that gains momentum in the context of quality
assurance and protection against fraud, as well as securing
commercial assets like designation of origin. However, current
solutions are based on methods that require significant computa-
tional resources and management of large data volumes, making
them unsuitable for applications in the context of Internet-of-
Things (IoT), edge computing and microcontrollers (MCU). This
study presents a novel, computationally efficient and robust
approach for fully field-integrated, low-complexity and high-
accuracy classification of olives variety and location of origin,
based on genetic ‘fingerprinting’ via a minimal set of information-
rich features. The method is tested with real-world datasets,
achieving accuracy rates above 96% and 99%, respectively, using
various instance-based and tree ensemble classification models.

Index Terms—machine learning, genetic profiling, DNA anal-
ysis, food industry

I. INTRODUCTION

Genetic profiling via data-driven methods is becoming more
reliable and readily available for a wide range of industries,
especially in the food supply chain. The genome itself is
treated as the input source for generating DNA data for
analysis via algorithms end methods from the Bioinformatics
and Machine Learning (ML) domains. However, the volume
and scale of the generated data are often a prohibitive factor for
designing both efficient and simple models. On the other hand,
the wide adoption of such processes in real-world production
lines and supply chains requires economic and robust model
designs. Moreover, in the context of massively field-deployed
modules regarding Internet-of-Things (IoT), edge computing
and microcontroller (MCU) applications, these solutions have
to be of low-complexity, capable of running in hardware-
constrained environments and even completely in offline mode
(non-networked).

The purpose of this work is to formulate and present a
completely data-driven and practical approach for genetic
profiling of olives. This profiling is based on Polymerase Chain
Reaction (PCR) for DNA duplication and High Resolution
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Melt (HRM) [1], [2] process for producing fluorescence-
versus-temperature experimental data, in order to quantita-
tively characterize specific portions of the genome that are
identified and highlighted by specially designed biomarkers.
In practice, any similar genetic profiling is compatible with
this data-driven approach, such as the DNA helicity-versus-
temperature that has been used extensively in related works
[2], [3]. However, the fluorescence modality was chosen as
more reliable and easier to implement in the field, i.e., within
the food supply chain itself and with low-end computing
resources, compared to alternative methods already studied in
the context of DNA helicity [3]–[5].

Olives (leaves) variety and location of origin were selected
as the practical use case, since olive oil and particularly Extra
Virgin Olive Oil (EVOO) is one of the most important agri-
cultural products in Mediterranean countries and a high-risk
target of non-compliances and frauds such as admixtures with
other lower quality oils. There is already evidence of genetic
diversity in olives genome at the scope of the Mediterranean
region and beyond [6]. However, with this work it is the first
time that the detection of the olives variety and (especially)
the location of origin at such geographic granularity (distinct
regions of Crete island, Greece) via purely data-driven genetic
profiling is demonstrated at such high success rates.

The paper is organized as follows: section I provides a
brief introduction to the context and the main challenges of
the problem; section II presents the details of the problem,
the exact goals of the proposed approach and the design
limitations and constraints; section III describes the two main
stages of the proposed approach, namely the re-processing
pipeline and the classification models; section IV presents
the experimental protocol and results; section V discusses the
main outcomes and provides hints for future work; finally,
section VI provides the main conclusions.

II. PROBLEM STATEMENT

The challenge addressed by the proposed method can be
summarized as follows:

1) Given: A pool of data series of fluorescence versus
temperature, produced by HRM-based analysis of DNA
strands of olives (leaves),



2) Produce: A data-driven, computationally efficient pro-
cessing sequence for ‘fingerprinting’ and discriminating
these DNA strands with regard to: (a) their variety and
(b) their location of origin.

The modality of fluorescence was based on the application
of biomarkers specifically designed for this purpose, i.e., high-
light the subtle genetic differences between different olives
varieties and locations of origin in Crete, Greece, and with
a data generation framework designed and implemented by
InTTrust S.A. and BIOCOS P.C. [7]. Both these classification
tasks are directly related to Protected Designation Origin
(PDO) and Protected Geographical Indication (PGI) for quality
assurance and protection against fraud in the food industry.
This HRM-based data generation process is expected to be
optimized, streamlined and widely available at the source of
the food supply chain within the next few years [7].

There are three main requirements for the design of the
proposed approach, which essentially constitute the technical
limitations and constraints for the solution:

• Robust genetic profiling, that can be used as a ‘finger-
print’ of the source product throughout the food supply
chain;

• Lightweight models, readily applicable to Internet-
of-Things (IoT), edge computing and microcontroller
(MCU) applications;

• Production-grade performance, i.e., highly efficient and
accurate model proposals.

The first item is related to reliable identification and tracking
of olives, as a use case, end-to-end in the food supply
chain of related dietary products. In practice, the genetic
‘fingerprint’ of olive leaves should be able to distinguish
important characteristics such as variety and location of origin,
clearly unique and verifiable against admixtures and other
impurities related to quality control and assurance. For a real-
world application, the subtle genetic differences highlighted
by the HRM-based DNA analysis must be translated into a
well-defined data-centric processing sequence, which includes
pre-processing and can support automated classification. Such
applications may employ other cutting-edge technologies, such
as blockchain and smart contracts [7], for provable and tamper-
proof authenticity and purity of the food product.

The second item is a design choice that enables the im-
plementation of such applications in hardware-constrained
environments, specifically in relation to computing resources.
If such an end-to-end process, implementing genetic profiling
and ‘fingerprinting’ of food products, can be developed in low-
cost, low-energy and even disposable computing modules, then
it becomes more relevant to real-world massive deployments in
the food supply chain of agriculture and food products. That is,
instead of tracking only lot numbers and distribution batches,
the product itself is characterized by intrinsic biometric-like
data generators.

Finally, the third item is also a design choice in terms
of being ‘provably’ efficient for real-world applications, via
extensive experimental tests and model optimizations. This

means that it is not enough to have relatively high peak success
rates in the classifications, but require consistently high mean
success rates along with robustness and generalization level.
The two modalities presented in this work, i.e., variety and
location of origin, have been selected precisely for this reason.
Other similar classification targets and tasks are still under
refinement for reaching the same output quality in terms of
predictive accuracy.

III. METHODS

The output of the HRM-based DNA analysis is data se-
ries of fluorescence values versus temperatures, spanning up
to several thousands of data points each w.r.t. a range of
temperatures (T ∈ [70oC . . . 95oC], sampled per 0.01oC).
These data series are further processed via signal analysis to
extract relevant features and to train predictive ML models,
characterizing and identifying the content of each sample.

More specifically, this processing consists of two distinct
stages: (i) a hybrid pre-processing pipeline for data processing
and features generation and selection; and (ii) training and
evaluation of predictive ML models for each classification
task, as described in section IV.

A. Pre-processing pipeline

For the pre-processing stage, the term ‘hybrid’ refers to the
complementary involvement of human expert and automated
cleansing during the data quality review, especially regarding
the assessment of extreme cases and error samples that are
removed. This is the standard procedure for data quality
improvement within a Data Analytics (DA) pipeline, involving
human experts specifically in the design phase, in order to
formulate clear and efficient validation rules and thresholds for
the subsequent fully-automated system. In practice, the human
expert labels the validity of each data sample, flagging any
obvious errors for removal before any further processing, i.e.,
to avoid contaminating the generated feature data for training
with invalid instances.

The complete pre-processing pipeline consists of the fol-
lowing steps:

1) Raw data series import
2) Visual inspection of the data, removal of errors
3) Data filtering for noise removal
4) 1st derivative data series generation
5) Data corrections / pre-fitting adjustments (prefix)
6) Curve-fitting functions (Gaussian, rational)
7) Curve-fitting quality metrics (RMSE)
8) Visual assessment / validation of curve-fitting
9) Statistical filtering for curve-fitting quality

10) Feature vectors to training dataset
Steps 1-4 constitute the import, inspection, noise removal

via low-pass filtering (smoothing) and preparation of the data
for further processing. Figure 1 is an example of the data
series for fluorescence versus temperature using a specific
biomarker; the two colors illustrate the discrimination between
two varieties, namely ‘Koroneiki’ (‘vK’) and ‘Tsounati’ (‘vT’),
in olive leaves.



Fig. 1. Pre-processed data series of DNA fluorescence versus temperature in
two varieties (red=vK, blue=vT) for olive leaves.

Step 5 is a common practice when working with 1st deriva-
tive data from temperature-based DNA profiling, in order to
compensate for non-horizontal of temperature response below
the critical threshold of phase transition, as illustrated in
Figure 1 at about 78 degrees (C). In turn, this negative linear
slope translates to a stable negative value in the 1st derivatives
plot, illustrated in Figure 2.

Fig. 2. Pre-processed 1st derivative series of DNA fluorescence versus
temperature in two varieties (red=vK, blue=vT) for olive leaves.

Due to this inconsistency in the phase transitions of temper-
ature response, the two regions of constant-value 1st derivative
(i.e., on the left and the right of the middle region) are fixed at
different levels, negative for the left region and usually near
zero for the right region. This shape is often incompatible
with symmetric curve-fitting models like the Gaussian. Hence,
a simple k-order weighting prefix correction can be applied,
according to (1), which also mitigates any remaining noise
artifacts of larger scale, which are often observed in this left
region of the 1st derivative curve:

ŷ′t = y′t (t/τ)
k , ∀ 0 ≤ t ≤ τ (1)

In step 6, two curve-fitting models have been employed for
encoding the most important properties of each 1st derivative
data series. Specifically, a Gaussian function as in (2) and

a rational polynomial function as in (3) have been selected,
based on their efficiency, easy convergence and limited number
of parameters.

fg(x) = α e(
x−µ
σ )

2

(2)

fr(x) =
p1x+ p2

x2 + q1x+ q2
(3)

Figure 3 illustrates an example of rational curve-fitting on
a 1st derivative data series sample, with prefix weighting
disabled (not necessary).

Fig. 3. Example of the 1st derivative data series and the corresponding curve
fitting function (rational), with prefix (left) disabled.

Steps 7-9 constitute the quality assessment and filtering of
the results produced by the curve-fitting step. More specifi-
cally, the Root Mean Squared Error (RMSE) was employed as
a robust quality metric with bias towards larger deviations, i.e.,
more homogeneous errors are preferred over results with the
same mean but with larger variance (e.g. a few large extremes).
For each curve-fitting function f , the resulting RMSEf is
kept as a separate feature, as well as used in combination
(multiplied together) to produce a single quality index, namely
RMSE(g,r) = RMSEg ·RMSEr.

Next, the curve-fitted data series samples (1st derivative) is
sorted against this RMSE(g,r) index, with visual assessment
and validation identifying the first conclusive threshold that
separates ‘good’ from ‘bad’ fits, i.e., the sudden transition
between the sharp drop from large fitting errors to relatively
low and stable fitting errors. This assessment and threshold es-
timation can be easily automated via linear slope analysis, but
in this study it was purposely ‘hybrid’ with visual inspection in
the loop, in order to rule out any effects that could poison the
quality and reliability of the next stage, i.e., the construction of
the training and testing datasets for the classification models.

The following plot is an example illustrating the curve-
fitting quality assessment based on the combined error metric
RMSE(g,r) as previously described. In this case, for the data
series generated with a specific marker, the two curve-fitting



functions produce acceptable fits for all but the first 17 (X-
axis) data samples, which are subsequently removed with the
proper threshold value (Y-axis).

Fig. 4. Curve-fitting quality assessment based on the combined RMSE(g,r).
In this example, the curve fitting functions produced acceptable fits for all but
the first 17 (X-axis) data samples, which were discarded.

Finally, in step 10 the curve-fitting parameters for each
data sample, as well as a few additional descriptive statistics,
are grouped together into a concise feature vector that fully
identifies each sample as a genetic ‘fingerprint’.

Table I presents all the elements of this feature vector, which
constitutes the initial dimensionality of the input space for
the next stage, i.e., the design, training and testing of the
classification models. The ‘Data’ column defines source data
for evaluation (‘X’: external, ‘S’: Fluo-vs-Temp data series,
‘D’: 1st derivarive of S); ‘FVxx’ parameters correspond to the
definitions in (2) and (3); and entropy according to (4):

fent(x) = −
∑
i

px(i) log px(i) (4)

TABLE I
CONTENTS (DIMENSIONS) OF THE FEATURE VECTORS GENERATED BY

THE PRE-PROCESSING PIPELINE.

Symbol Data Description
MK X Biomarker used {1,2,3}
MIN S Minimum value
MAX S Maximum value
ENT S Entropy (4)
FVg1 D Gaussian fit, scale (α)
FVg2 D Gaussian fit, mean (µ)
FVg3 D Gaussian fit, sigma (σ)
FVg4 D Gaussian fit, error (RMSEg)
FVq1 D Rational poly fit, numerator 1 (p1)
FVq2 D Rational poly fit, numerator 2 (p2)
FVq3 D Rational poly fit, denominator 1 (q1)
FVq4 D Rational poly fit, denominator 2 (q1)
FVq5 D Rational poly fit, error (RMSEr)

In conclusion, a single ‘inclusive’ feature vector is used
for all the individual classification tasks, generated as the
result of data filtering, noise removal, descriptive statistics,
generation of the 1st derivative series, encoding via two curve-
fitting functions and error-fitting quality metrics. Hence, the

pre-processing pipeline acts as a data cleansing and feature
generation module that effectively restores the original data
in terms of quality, removes outliers and errors, translates the
data series into a compact, information-rich vector of the most
important inherent characteristics and defines the input space
for each subsequent discrimination task.

The pre-processing output and the datasets generated ac-
cording to the definition in Table I are available for public
non-commercial use (CC-NC-SA) [8].

B. Classification models

The second stage of the proposed method consists of using
the datasets containing the feature vectors for designing and
training various ML architectures and algorithms, ranging
from single decision learners to ensembles of classifiers
employing voting schemes. Specific models are trained and
optimized as such for each task, i.e., olives variety or location
of origin.

The feature selection process, as well as the three categories
of classifier models employed, are described next.

1) Feature selection: Each classification task, i.e., olives
variety or location of origin, employed a separate feature
selection process, using exhaustive search for optimal com-
binations, since the dimensionality of the input space (13
features) is small enough to do so. For the evaluation of
each feature subset, two methods have been employed in
a complementary sense, namely: (a) CFS-based statistical
ranking and (b) classifier-based discrimination ranking. For
(a), the Correlation-based Features Subset (CFS) selection
method [9] evaluates the gain from each subset of attributes by
considering the (statistical) predictive power of each feature
compared to redundancies between them. Hence, subsets of
features that are highly correlated with the target (class) while
having low statistical correlation between them are ranked
higher. For (b) the standard Classification and Regression
Tree (CART) classifier [10] was used as the discrimination
evaluator due to its speed and simplicity. The results from CFS
and CART feature selections were then combined together,
retaining only the members that were selected by at least one
of them (union), thus expecting that smaller combined feature
subsets are indeed more robust and descriptive of the domain
space.

Table II presents the optimal features subsets used in teh
classification tasks, namely Task 1 for olives variety and Task
2 for location of origin for vK and vT samples, described in
detail in section IV-1.

2) Instance-based classifiers: Two types of instance-based
or ‘lazy’ classifiers were included in this study. Specifically,
IBkLG [11] is a variation of the typical k-nearest neighbour (k-
nn) classifier [10], employing internal cross-validation and log
distance weighting. Additionally, K* or ‘Kstar’ classifier [12]
as an improved k-nn alternative, using entropy-based distance
function instead of standard geometric distance metric (e.g.
Euclidean).

3) Decision trees: The simplicity, fast training and inherent
feature selection-like capabilities (top levels) of decision tree



TABLE II
OPTIMAL FEATURE SUBSETS USED IN THE CLASSIFICATION TASKS.

Feature Task 1 Task 2(vK) Task 2(vT)
MK x
MIN x x
MAX x x
ENT x
FVg1 x
FVg2 x
FVg3 x x
FVg4 x x
FVq1 x x x
FVq2
FVq3
FVq4 x
FVq5 x

models make them very valuable candidates for feature gain
assessment, as well as members of classifier ensembles. Four
different types of decision trees were employed in total.
Specifically, CART [10] was used in feature selection, as
described earlier. J48 tree [13] is a variation of the typical C4.5
decision tree [10], with the ability to employ pruning during
training. Reduced Error Pruning (REP) trees [14] are based on
iterative construction and pruning that increases information
gain or reduces variance, while gradually minimizing the Mean
Squared Error (MSE) or other similar error metric. Finally,
Random trees [14] employs the Bagging [10] idea to split the
initial features set into randomized subsets for training each
tree node. The selection of these tree learners, especially the
ensembles, is based on the fact that proper data pre-filtering,
feature selection, post-training pruning greatly improves any
instabilities and noise sensitivity that tree models often show
in practice. Furthermore, it has been proven that feature
subspace partitioning (Random Forests) or transformation (Ro-
tation Forests) and aggregated decision-making (ensembles)
produces at least as efficient learners as any single model of
much higher complexity [15], [16].

4) Ensembles: Instead of using a single complex/‘strong’
model in a classification task, both theory and practice have
proven that using a pool of simpler/‘weak’ models is at least
equally effective [15], as well as more efficient in terms
of parallelization and training time. Four different ensemble
types have been employed in this study. Specifically, the
Adaboost M1 algorithm [15], [17] uses the idea of itera-
tive ensemble construction via boosting, i.e., training another
separate classifier (J48) for the marginal/error cases from
the previous iteration. Multiboost AB is an extension of it
[18], employing bifurcation (‘wagging’) techniques in addition
to typical boosting and better robustness to noise-associated
errors as a result. Random Forest [15], [19] is e multi-classifier
extension of the Random tree approach, training different trees
for each randomized feature subset (instead of for each tree
node). Finally, Rotation Forest [20] is an improvement over
Random Forests, where the original feature space is split
into randomized subsets along with rotation transformations,
usually via Principal Component Analysis (PCA) [10] or other

random projection algorithm, in order to produce not just
distinct but also uncorrelated feature subsets. For the final
decision of the ensemble, all these approaches employ standard
majority voting, which has also been demonstrated as the
optimal aggregation scheme for hard-decision tasks [15], [16].

IV. EXPERIMENTS AND RESULTS

1) Experimental protocol: As previously described, there
are two classification targets which constitute two distinct
tasks, namely (i) Task 1 for olives variety and (ii) Task 2
for location of origin.

For variety (Task 1) the dataset used consisted of 341
samples, prepared according to the pre-processing pipeline
described in section III-A, and two target classes, namely
‘Koroneiki’ (‘vK’) and ‘Tsounati’ (‘vT’), in olive leaves. For
the construction of this dataset only one biomarker data were
used after the feature selection process according to section
III-B1, thus the MK feature in Table I was excluded.

For location of origin (Task 2), there are two subsets of
the complete dataset, each associated to a single variety, i.e.,
vK or vT. This hierarchical approach was selected in order
to investigate any bias of better or worse performance of the
classifiers on one of the two varieties. Thus, the first subset
is for pure vK and consists of 268 samples, while the second
subset is for pure vT and consists of 257 samples, prepared
according to the pre-processing pipeline described in section
III-A, and both with two target classes, namely ‘Chania’
(‘rC’) and ‘Rethymno’ (‘rR’), which are nearby geographical
regions of Crete, Greece. For the construction of the vK dataset
only one biomarker data were used after the feature selection
process, thus the MK feature in Table I was excluded. In
contrast, for the vT dataset the data from two biomarkers were
used after the feature selection process, thus the MK feature
in Table I was included in the optimal feature subset.

All accuracy rates and generalization capabilities have been
estimated with k-fold cross-validation training/testing [10]
with k = 10, assessing their inherent robustness and real-
world performance.1

2) Dimensionality reduction: As previously noted, decision
tree classifiers provide fast training and explainable structure
in the trained models, since decision nodes are based on
thresholds for specific features. Furthermore, the selection of
specific features in the top levels or repeatedly throughout the
tree essentially provides hints of information-rich features, i.e.,
an intermediate method of highlighting the most important
features as in feature selection. The inherent drawback of many
decision tree models being sensitive to noise and outliers is
remedied via the introduction of tree ensembles, instead of
single trees [15].

In the case of domain-transformation models, e.g. with Ro-
tation Forests, the optimal feature subsets are further processed
via a projection-approximation transformation like PCA and
the resulting ‘augmented’ feature vectors are used as input

1Experimental work was based on: Mathworks MATLAB v9.4/R2018a
(x64); Octave v5.1.0; R v3.6.2; WEKA v3.9.4; IBM SPSS Modeler v14.1
& Statistics v26; custom Java & C/C++ tools for data import/export.



for training the ML models. The following is an example
illustrating the statistical importance (individual discrimination
capacity) of the first three PCA components of the generated
features dataset using a single biomarker. These three PCA
components are the compact representation of the original
13 features, capable of capturing 98% of their information
content (variance). Thus, these are adequate training input for
a predictive ML model, capable of discriminating variety in
Task 1 (vK-versus-vT), achieving accuracy of more than 96%
even with a single J48 or Random tree classifier. It is also a
verification for the size of the optimal feature subset for Task
1, as described in Table II.

Fig. 5. Example of PCA-based dimensionality reduction of the features space
in Task 1.

3) Classification results: Six main classification models
were used for comparative results in both tasks, according to
their descriptions in section III-B2 and III-B4.

Table III presents the results per (optimized) classification
model for Task 1, i.e., olives variety (vK-versus-vT), using
the feature subset as noted in Table II. IBkLG was optimized
with k = 4; all tree ensembles used a pool of size 10 and the
J48 as the base classifier, except Random Forest which used
Random trees; in Rotation Forest the transformation used was
PCA. Due to the saturation of the accuracy rate towards 100%,
deviations in all cases were in the order of ≤ 3/341, i.e., less
than ±1% w.r.t. the table values, over several randomization
(seed) runs of the k-fold cross-validation process.

TABLE III
TASK 1: OLIVES VARIETY

Classifier models Acc%
Kstar 96.48

IBkLG 94.13
AdaboostM1 94.72

MultiboostAB 95.01
Random Forest 94.72
Rotation Forest 94.43
Note: Acc% deviation in all cases is ≤ ±1%.

Similarly, Table IV presents the results per (optimized)
classification model for Task 2, i.e., location of origin (vC-
versus-vR) for the two varieties (vK, vT), using the feature
subset as noted in Table II. For vK, IBkLG was optimized
with k = 1; all tree ensembles used a pool of size 10 and the
J48 as the base classifier, except Random Forest which used
Random trees; in Rotation Forest the transformation used was
PCA. For vT the classifiers were configured exactly the same,
except from IBkLG which was optimized with k = 3. Due to

the saturation of the accuracy rate towards 100%, deviations
in all cases were in the order of < 3/341, i.e., less than ±1%
w.r.t the table values, over several randomization (seed) runs
of the k-fold cross-validation process.

TABLE IV
TASK 2: LOCATION OF ORIGIN

Classifier models Acc% (vK) Acc% (vT)
Kstar 99.25 99.61

IBkLG 99.25 98.83
AdaboostM1 98.13 98.05

MultiboostAB 97.76 97.66
Random Forest 98.88 99.22
Rotation Forest 98.51 98.44
Note: Acc% deviation in all cases is ≤ ±1%.

Although the classification results in Tables III and IV
refer to very high performance for all models, the underlying
problems in both Tasks 1 & 2 are not at all simple or of linearly
separable classes. Figure 6 illustrates a X-Y scatter plot with
two of the features in the optimal subset (size=5) used in Task
2(vK), i.e., location or origin for the vK samples.

Fig. 6. Geographical discrimination of the same variety (vK) from the regions
of Chania (vC=blue) and Rethymno (vR=red); the plot illustrates the two of
the most statistically significant features (X=MAX, Y=FVg4).

V. DISCUSSION AND FUTURE WORK

According to the detailed results in Tables III and IV, the
best-performing classifier for both Tasks 1 & 2 is Kstar. For
olives variety (Task 1) it achieved accuracy rate of 96.48%
over k-fold cross-validation testing. For location of origin
(Task 2) it achieved accuracy rate of 99.25% (same as IBkLG)
in the vK samples and 99.61% in the vT samples.

It is important to note that, regardless of the classifier model,
all experimental tests verify that the pre-processing pipeline
and the feature generation process is indeed extremely efficient
in two ways. First, in reducing the original input space, from
data series of several thousands of points versus temperature
(T ∈ [70oC . . . 95oC], sampled per 0.01oC) to a feature vector
of only 13 values. Second, in capturing the content-rich infor-
mation from each sample w.r.t. the two classification tasks,
i.e., the genetic profiling and ‘fingerprinting’ for constructing
a proper input space for training the models.

Furthermore, this genetic ‘fingerprint’ is compact enough
to be incorporated in various other applications related to



highly reliable quality assurance in the food supply chain,
protection against fraud, PDO and PGI via ‘smart’ contracts
and blockchain platforms, etc. In practice, any such food
product that can be tagged with this DNA-based biometric-like
data generator and then tested with this proposed approach is
extremely difficult to tamper or degrade, e.g. with admixtures.

Regarding the pre-processing pipeline, it has been proven
as robust, reliable and lightweight enough for real-world
IoT/edge/MCU applications. Human expert intervention in the
list of action points (see section III-A) is necessary only in the
design phase, as in step 2. Similarly for step 8, the curve-fitting
quality threshold for error can be fixed at an optimal value
or even adapted via simple derivative analysis, i.e., sudden
transition from sharp drop to almost flat error slopes. All
the steps in the pre-processing pipeline, including the feature
generation (curve-fitting parameters) and filtering (smoothing
and threshold-based), are processes of linear or sub-linear
complexity and very low computational requirements.

Specifically for the two curve-fitting steps, each parameter
can be easily initialized very close to the expected optimal
value, e.g. the Gaussian mean µ at the lower peak of the 1st
derivative plot, and any standard optimization method can be
employed thereon, since the curve-fitting models include only
only three (Gaussian) or four (rational poly) free parameters
and relatively smooth underlying data series.

Similarly for the classification models, it is clear from the
results that any of the classifiers that were tested was very
efficient and robust in terms of performance. Instance-based
classifiers have the drawback of exchanging lower complexity
for higher storage requirements, as they need a large portion
of representative training data available at all times. However,
even with a dataset size in the order of 200-300 samples as in
Tasks 1 & 2, the feature space is so small (13 at most) that
the memory requirements in practice are very low.

On the other hand, having a more complex classifier like
Rotation Forest requires more processing per sample even
in the recall mode (after training), with the advantage of
producing a much more compact trained model. Similarly,
the processing requirements in the recall mode are higher
especially with the PCA enabled, but again this is fully pre-
determined during the training phase and at the recall mode it
is only a vector rotation with low dimensionality. Therefore,
in all cases and choices, the proposed approach remains well
within the requirement for lightweight models, applicable to
hardware-constrained implementations (IoT/edge/MCU).

VI. CONCLUSION

In this work, a novel data-driven approach was presented for
genetic profiling and ‘fingerprinting’ of olives and olive leaves
via biomarkers and HRM-based DNA analysis, capable of
supporting various applications for the food industry including
quality assurance, protection against fraud, etc. The approach
consists of two stages, namely a pre-processing pipeline for
data cleansing and feature generation, and a classification via
instance-based or tree ensemble models. Two classification
tasks were presented as real-world use cases, regarding the

olives variety and the location of origin; both extremely
valuable for the food supply chain and relatively unexplored
in the context of such applications.

Extensive experimental tests with real-world datasets us-
ing various classifiers demonstrated the validity, effectiveness
and robustness of the proposed approach, achieving accuracy
rates above 96% and 99%, respectively, in the two classi-
fication tasks. Furthermore, the proposed solution is based
on low-complexity designs, capable of running in hardware-
constrained environments and even completely in offline mode
(non-networked). It is expected that such approaches of genetic
‘fingerprinting’ will dominate the food industry in the future,
especially in the context of IoT/edge/MCU and ‘smart’ con-
tracts via blockchain technologies, for provable and tamper-
proof authenticity and purity of the food product.
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